Indian hedgehog: a mechanotransduction mediator in condylar cartilage.
نویسندگان
چکیده
Indian hedgehog (Ihh) is a critical mediator transducing mechanical signals to stimulate chondrocyte proliferation. To clarify the cellular signal transduction pathway that senses and converts mechanical signals into tissue growth in mandibular condyle, we evaluated Ihh expression and its relation to the kinetics of replicating mesenchymal cells in condylar cartilage during natural growth and mandibular advancement. Thirty-five-day-old Sprague-Dawley rats were fitted with functional appliances. Experimental animals with matched controls were doubly labeled with iododeoxyuridine and bromodeoxyuridine so that we could evaluate the cycles of the proliferative mesenchymal cells. Mandibular advancement triggered Ihh expression in condylar cartilage. A higher level of Ihh expression coincided with the increase of the replicating mesenchymal cells' population and the shortening of the turnover time. These findings suggested that Ihh acts as a mediator of mechanotransduction that converts mechanical signals resulting from anterior mandibular displacement to stimulate cellular proliferation in condylar cartilage.
منابع مشابه
Repeated mechanical loading enhances the expression of Indian hedgehog in condylar cartilage.
Indian hedgehog (Ihh) acts as a mechanotransduction mediator that converts mechanical strain into cellular proliferation and cartilage formation in mandibular condylar cartilage. The aim of this study was to examine the effect of repeated mechanical strain on the level of expression of Ihh and type II collagen mRNA in condylar growth. Two hundred and eighty 35 days old Sprague-Dawley rats were ...
متن کاملEvaluation of CD98 Expression in Normal and Osteoarthritic Human Articular Chondrocytes
Background: Recent studies have provided evidence that integrins play roles in recognition of mechanical stimuli and its translation into a cellular response. Integrin signaling may be regulated by a number of mechanisms including accessory proteins such as CD98 (4F2 antigen). Objectives: To determine CD98 expression by human articular chondrocytes and its involvement in human articular mechano...
متن کاملHedgehog signalling does not stimulate cartilage catabolism and is inhibited by Interleukin-1β
BACKGROUND In osteoarthritis, chondrocytes adopt an abnormal hypertrophic morphology and upregulate the expression of the extracellular matrix-degrading enzymes, MMP-13 and ADAMTS-5. The activation of the hedgehog signalling pathway has been established in osteoarthritis and is thought to influence both of these processes. However, the role of this pathway in the initiation and progression of o...
متن کاملStudy of chondrogenic potential of stem cells in co-culture with chondrons
Objective(s): Three-dimensional biomimetic scaffolds have widespread applications in biomedical tissue engineering due to similarity of their nanofibrous architecture to native extracellular matrix. Co-culture system has stimulatory effect on chondrogenesis of adult mesenchymal stem cells. This work presents a co-culture strategy using human articular chondrons and adipose-derived stem cells (A...
متن کاملCD147 (Extracellular Matrix Metalloproteinase Inducer-EMMPRIN) Expression by Human Articular Chondrocytes
Background: Integrins are a family of transmembrane proteins that allow communication between the extracellular matrix and the interior of cells. Chondrocytes, cells of articular cartilage, express integrins and these molecules appear to have a variety of roles including mechanotransduction. Integrins are known to associate with a number of accessory molecules such as CD147 that may act to regu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of dental research
دوره 83 5 شماره
صفحات -
تاریخ انتشار 2004